Search:


Pentium D:

The Pentium D brand refers to two series of dual-core 64-bit x86 processors with the NetBurst microarchitecture manufactured by Intel. Each CPU comprised two single-core dies (CPUs) - next to each other - in one Multi-Chip Module package. The brand's first processor, codenamed Smithfield, was released by Intel on May 25, 2005. Nine months later, Intel introduced its successor, codenamed Presler, but without offering significant upgrades in design, still resulting in a relatively high power consumption. By 2005, the NetBurst processors reached the clock speed barrier at 4 GHz due to a thermal (and power) limit exemplified by the Presler's 130 W TDP (a high TDP requires additional cooling that can be noisy or expensive). The future belonged to more efficient and slower clocked dual-core CPUs on a single die instead of two. The dual die Presler's last shipment date on August 8, 2008 marked the end of the Pentium D brand and also the NetBurst microarchitecture.

Pentium 4:

The Pentium 4 brand refers to Intel's line of single-core mainstream desktop and laptop central processing units (CPUs) introduced on November 20, 2000 (August 8, 2008 was the date of last shipments of Pentium 4s). They had the 7th-generation architecture, called NetBurst, which was the company's first all-new design since 1995, when the Intel P6 architecture of the Pentium Pro CPUs had been introduced. NetBurst differed from the preceding Intel P6 - of Pentium III, II, etc. - by featuring a very deep instruction pipeline to achieve very high clock speeds (up to 4 GHz) limited only by max. power consumption (TDP) reaching up to 115 W in 3.6–3.8 GHz Prescotts and Prescotts 2M (a high TDP requires an additional cooling that can be noisy or expensive). In 2004, the initial 32-bit x86 instruction set of the Pentium 4 microprocessors was extended by the 64-bit x86-64 set.
Pentium 4 CPUs introduced the SSE2 and SSE3 instruction sets to accelerate calculations, transactions, media processing, 3D graphics, and games. They also integrated Hyper-threading (HT), a feature to make one physical CPU work as two logical and virtual CPUs. The Intel's flagship Pentium 4 also came in a low-end version branded Celeron (often referred to as Celeron 4), and a high-end derivative, Xeon, intended for multiprocessor servers and workstations. In 2005, the Pentium 4 was complemented by the Pentium D and Pentium Extreme Edition dual-core CPUs.

Pentium M:

The Pentium M brand refers to only two single-core 32-bit x86 microprocessors (with the Intel P6 microarchitecture) introduced in March 2003 (during the heyday of the Pentium 4 desktop CPUs), and forming a part of the Intel Centrino platform. The Pentium M branded processors had a maximum power consumption (TDP) of 3-25 W, and were intended for use in laptop personal computers (thus the "M" moniker standing for mobile). They evolved from the core of the last Pentium III branded CPU by adding the bus interface of Pentium 4 one, an improved instruction decoding/issuing front end, improved branch prediction, SSE2 support, and a much larger cache. The first Pentium M branded CPU, codenamed the Banias, was followed by the second one - the Dothan. After the Pentium M branded processors, Intel released the Core branded dual-core mobile Yonah CPU with a modified microarchitecture. Pentium M branded CPUs can be considered as the end of the Intel P6 microarchitecture.

Pentium 4 Extreme Edition(P4EE):

Gallatin (Extreme Edition):

In September 2003, at the Intel Developer Forum, the Pentium 4 Extreme Edition (P4EE) was announced, just over a week before the launch of Athlon 64, and Athlon 64 FX (AMD64 FX). The design was mostly identical to Pentium 4 (to the extent that it would run in the same motherboards), but differed by an added 2 MiB of Level 3 cache. It shared the same Gallatin core as the Xeon MP, though in a Socket 478 form factor (as opposed to Socket 603 for the Xeon MP) and with an 800 MT/s bus, twice as fast as that of the Xeon MP. An LGA 775 version is also available.
While Intel maintained that the Extreme Edition was aimed at gamers, some viewed it as an attempt to steal the Athlon 64's launch thunder, nicknaming it the "Emergency Edition". With a price tag of ~$1000, it was also referred to as the "Expensive Edition" or "Extremely Expensive". Many condemned Intel for cannibalizing the Xeon line, but no such complaints were aimed at AMD's Athlon 64 FX-51, which was merely a repackaged Opteron 148.
The effect of the added cache was somewhat variable. In office applications, the Extreme Edition was generally a bit slower than the Northwood, owing to higher latency added by the L3 cache. Some games benefited from the added cache, particularly those based on the Quake III and Unreal engines. However, the area which improved the most was multimedia encoding, which was not only faster than the Pentium 4, but also on both Athlon 64s.
A slight performance increase was achieved in late 2004 by increasing the bus speed from 800 MT/s to 1066 MT/s. Only one Gallatin-based chip at 3.46 GHz was released before the Extreme Edition was migrated to the Prescott core. The new 3.73 GHz Extreme Edition had the same features as a 6x0-sequence Prescott 2M, but with a 1066 MT/s bus. In practice however, the 3.73 GHz Extreme Edition almost always proved to be slower than the 3.46 GHz version.
The 'Pentium 4 Extreme Edition' should not be confused with a similarly-named later model, the 'Pentium Extreme Edition', which is based on the dual-core Pentium D.

Mobile Pentium 4:

The Mobile Intel Pentium 4 Processor was released to address the problem of putting a full Pentium 4 desktop chip into a laptop, which some manufacturers were doing. The Mobile P4 still used 70 W of power, which let it bridge the gap between the full Pentium 4 (using about 82 W), and the Mobile Pentium 4 M (using about 35 W).

Mobile Pentium 4 M
:

Also based on the Northwood core, the Mobile Intel Pentium 4 Processor - M was released on April 23, 2002 and included Intel's SpeedStep and Deeper Sleep technologies, and Hyper-Threading in some models. Intel's naming conventions made it difficult at the time of the processor's release to identify the processor model.There was the Pentium III mobile chip (or the PIII-M), the Mobile Pentium 4 M (or the P4-M), the Mobile Pentium 4 (or the Mobile P4), and then just the Pentium M which itself was based on the Pentium III. Its TDP is about 35 Watts in most applications. This lowered power consumption was due to lowered core voltage, and other features mentioned previously.

Pentium III Xeon:

In 1999, the Pentium II Xeon was replaced by the Pentium III Xeon. Reflecting the incremental changes from the Pentium II "Deschutes" core to the Pentium III "Katmai" core, the first Pentium III Xeon, named "Tanner", was just like its predecessor except for the addition of Streaming SIMD Extensions (SSE) and a few cache controller improvements. The second version, named "Cascades", was based on the Pentium III "Coppermine" core. The "Cascades" Xeon used a 133 MT/s bus and relatively small 256 KB on-die L2 cache resulting in almost the same capabilities as the Slot 1 Coppermine processors, which were capable of dual-processor operation but not quad-processor operation. To improve this situation, Intel released another version, officially also named "Cascades", but often referred to as "Cascades 2 MB". That came in two variants: with 1 MB or 2 MB of L2 cache. Its bus speed was fixed at 100 MT/s, though in practice the cache was able to offset this. Product codes for Tanner and Cascades mirrored that of Katmai and Coppermine; 80525 and 80526 respectively.

Pentium III:

The Pentium III brand refers to Intel's 32-bit x86 desktop and mobile microprocessors (with the sixth-generation Intel P6 microarchitecture) introduced on February 26, 1999. The initial Katmai Pentium III contained 9.5 million transistors. The brand's initial processors were very similar to the earlier CPUs branded Pentium II. The most notable difference was the addition of the SSE instruction set (to accelerate media processing and 3D graphics), and the introduction of a controversial serial number embedded in the chip during the manufacturing process.

Similarly to the Pentium II it superseded, the Pentium III was also accompanied by the Celeron brand for lower-end CPU versions, and the Xeon for high-end (server and workstation) derivatives. The Pentium III was eventually superseded by the Pentium 4, but its Tualatin core also served as the basis for the Pentium M CPUs, which used many ideas from the Intel P6 microarchitecture. Subsequently, it was the P-M microarchitecture of Pentium M branded CPUs, and not the NetBurst found in Pentium 4 processors, that formed the basis for Intel's energy-efficient Intel Core microarchitecture of CPUs branded Core 2, Pentium Dual-Core, Celeron (Core), and Xeon.

The Pentium III was the first Intel processor to break 1 GFLOPS, with a theoretical performance of 2 GFLOPS.

Pentium Xeon:

The Xeon brand refers to many families of Intel's x86 multiprocessing CPUs – for dual-processor (DP) and multi-processor (MP) configuration on a single motherboard targeted at non-consumer markets of server and workstation computers, and also at blade servers and embedded systems. The Xeon brand has been maintained over several generations of x86 and x86-64 processors. Older models added the Xeon moniker to the end of the name of their corresponding desktop processor, but more recent models used the name Xeon on its own. The Xeon CPUs generally have more cache than their desktop counterparts in addition to multiprocessing capabilities. Intel's (non-x86) IA-64 processors are called Itanium, not Xeon.

Pentium II Xeon:

The first Xeon branded processor was released in 1998, named the Pentium II Xeon (codenamed "Drake"), as the replacement of the Pentium Pro. It was based on the 0.25 µm "Deschutes" core (P6 microarchitecture) branded Pentium II (sharing its 80523 product code), used either a 440GX (a dual-processor workstation chipset) or 450NX (quad-processor, or oct with additional logic) chipset, and differed from the Pentium II desktop CPU (Deschutes) in that its off-die L2 cache ran at full speed. It also used a larger slot known as slot 2. Cache sizes were 512 KB, 1 MB, and 2 MB, and it used a 100 MT/s front side bus (FSB) .

Pentium Pro:

The Pentium Pro is a sixth-generation (P6 core) x86 architecture microprocessor produced by Intel in November 1995, and it was originally intended to replace the original Pentium in a full range of applications. While the Pentium and Pentium MMX had 3.1 and 4.5 million transistors, respectively, the Pentium Pro contained 5.5 million transistors. Later, it was reduced to a more narrow role as a server and high-end desktop chip. The Pentium Pro was capable of both dual- and quad-processor configurations. It only came in one form factor, the relatively large rectangular Socket 8.

In 1997, the Pentium Pro was succeeded by the Pentium II processor, which was essentially a cost-reduced and re-branded Pentium Pro with the addition of MMX and enhanced 16-bit code performance. Costs were reduced by using standard SRAM cache chips running at half-speed, which increased production yields. The next year, in 1998, Intel split the market into three segments: budget workstations and home users, higher-end workstations and power users, and multi-processor capable servers. Those segments were served by the Celeron, the Pentium II, and the Pentium II Xeon, respectively.

The Pentium Pro (given the Intel product code 80521), was the first generation of the P6 architecture, which would carry Intel well into the next decade. The design would scale from its initial 150 MHz start, all the way up to 1.4 GHz with the "Tualatin" Pentium III. The Pentium Pro had a theoretical performance of 400 MFLOPS. The core's various traits would continue after that in the derivative core called "Banias" in Pentium M and Intel Core (Yonah), which itself would evolve into Core architecture (Core 2 processor) in 2006 and onward.

Pentium II

The Pentium II brand refers to Intel's sixth-generation microarchitecture ("Intel P6") and x86-compatible microprocessors introduced on May 7, 1997. Containing 7.5 million transistors, the Pentium II featured an improved version of the first P6-generation core of the Pentium Pro CPUs, which contained 5.5 million transistors. In early 1999, the Pentium II was superseded by the Pentium III.

In 1998, Intel stratified the Pentium II family by releasing the Pentium II-based Celeron line of processors for low-end workstations and the Pentium II Xeon line for servers and high-end workstations. The Celeron was characterized by a reduced or omitted (in some cases present but disabled) on-die full-speed L2 cache and a 66 MT/s FSB. The Xeon was characterized by a range of full-speed L2 cache (from 512 KiB to 2048 KiB), a 100 MT/s FSB, a different physical interface (Slot 2), and support for symmetric multiprocessing.

Pentium:

The Pentium brand refers to Intel's single-core x86 microprocessor based on the P5 fifth-generation microarchitecture. The name Pentium was derived from the Greek pente (πέντε), meaning 'five', and the Latin ending -ium.

Introduced on March 22, 1993, the Pentium succeeded the Intel486, in which the number "4" signified the fourth-generation microarchitecture. Intel selected the Pentium name after courts had disallowed trademarking of names containing numbers - like "286", "i386", "i486" - though, sometimes, the Pentium is unofficially referred to as i586. In 1996, the original Pentium was succeeded by the Pentium MMX branded CPUs still based on the P5 fifth-generation microarchitecture.

Starting in 1995, Intel (inconsistently) used the "Pentium" registered trademark in the names of families of post-fifth-generations of x86 processors branded as the Pentium Pro, Pentium II, Pentium III, Pentium 4 and Pentium D (see Pentium (brand)). Although they shared the x86 instruction set with the original Pentium (and its predecessors), their microarchitectures were radically different from the P5 microarchitecture of CPUs branded as Pentium or Pentium MMX. In 2006, the Pentium briefly disappeared from Intel's roadmaps to reemerge in 2007 and solidify in 2008.

Vinod Dham is often referred to as the father of the Intel Pentium processor.

Typical PC Hardware:

A typical personal computer consists of a case or chassis in a tower shape (desktop) and the following parts:

Motherboard:

  • Motherboard - the "body" or mainframe of the computer, through which all other components interface.
  • Central processing unit (CPU) - Performs most of the calculations which enable a computer to function, sometimes referred to as the "brain" of the computer.
    • Computer fan - Used to lower the temperature of the computer; a fan is almost always attached to the CPU, and the computer case will generally have several fans to maintain a constant airflow. Liquid cooling can also be used to cool a computer, though it focuses more on individual parts rather than the overall temperature inside the chassis.
  • Random Access Memory (RAM) - Fast-access memory that is cleared when the computer is powered-down. RAM attaches directly to the motherboard, and is used to store programs that are currently running.
  • Firmware is loaded from the Read only memory ROM run from the Basic Input-Output System (BIOS) or in newer systems Extensible Firmware Interface (EFI) compliant
  • Internal Buses - Connections to various internal components.
    • PCI
    • PCI-E
    • USB
    • HyperTransport
    • CSI (expected in 2008)
    • AGP (being phased out)
    • VLB (outdated)
  • External Bus Controllers - used to connect to external peripherals, such as printers and input devices. These ports may also be based upon expansion cards, attached to the internal buses.
    • parallel port (outdated)
    • serial port (outdated)
    • USB
    • firewire
    • SCSI (On Servers and older machines)
    • PS/2 (For mice and keyboards, being phased out and replaced by USB.)
    • ISA (outdated)
    • EISA (outdated)
    • MCA (outdated)

Power Supply:

A case control, and (usually) a cooling fan, and supplies power to run the rest of the computer, the most common types of power supplies are AT and BabyAT (old) but the standard for PC's actually are ATX and Micro ATX.

Storage controllers:
Controllers for hard disk, CD-ROM and other drives like internal Zip and Jaz conventionally for a PC are IDE/ATA; the controllers sit directly on the motherboard (on-board) or on expansion cards, such as a Disk array controller. IDE is usually integrated, unlike SCSI which is found in most servers. The floppy drive interface is a legacy MFM interface which is now slowly disappearing. All these interfaces are gradually being phased out to be replaced by SATA and SAS.

Video display controller:
Produces the output for the visual display unit. This will either be built into the motherboard or attached in its own separate slot (PCI, PCI-E, PCI-E 2.0, or AGP), in the form of a Graphics Card.

Removable Media Devices:

  • CD (compact disc) - the most common type of removable media, inexpensive but has a short life-span.
    • CD-ROM Drive - a device used for reading data from a CD.
    • CD Writer - a device used for both reading and writing data to and from a CD.
  • DVD (digital versatile disc) - a popular type of removable media that is the same dimensions as a CD but stores up to 6 times as much information. It is the most common way of transferring digital video.
    • DVD-ROM Drive - a device used for reading data from a DVD.
    • DVD Writer - a device used for both reading and writing data to and from a DVD.
    • DVD-RAM Drive - a device used for rapid writing and reading of data from a special type of DVD.
  • Blu-ray - a high-density optical disc format for the storage of digital information, including high-definition video.
    • BD-ROM Drive - a device used for reading data from a Blu-ray disc.
    • BD Writer - a device used for both reading and writing data to and from a Blu-ray disc.
  • HD DVD - a high-density optical disc format and successor to the standard DVD. It was a discontinued competitor to the Blu-ray format.
  • Floppy disk - an outdated storage device consisting of a thin disk of a flexible magnetic storage medium.
  • Zip drive - an outdated medium-capacity removable disk storage system, first introduced by Iomega in 1994.
  • USB flash drive - a flash memory data storage device integrated with a USB interface, typically small, lightweight, removable, and rewritable.
  • Tape drive - a device that reads and writes data on a magnetic tape, usually used for long term storage.

Internal Storage Device:

Hardware that keeps data inside the computer for later use and remains persistent even when the computer has no power.

  • Hard disk - for medium-term storage of data.
  • Solid-state drive - a device similar to hard disk, but containing no moving parts.
  • Disk array controller - a device to manage several hard disks, to achieve performance or reliability improvement.

Sound card

Enables the computer to output sound to audio devices, as well as accept input from a microphone. Most modern computers have sound cards built-in to the motherboard, though it is common for a user to install a separate sound card as an upgrade.

Networking

Connects the computer to the Internet and/or other computers.

  • Modem - for dial-up connections
  • Network card - for DSL/Cable internet, and/or connecting to other computers.
  • Direct Cable Connection - Use of a null modem, connecting two computers together using their serial ports or a Laplink Cable, connecting two computers together with their parallel ports.

Other Pheripherals:

In addition, hardware devices can include external components of a computer system. The following are either standard or very common.

Includes various input and output devices, usually external to the computer system

Input:

Text input devices
Keyboard - a device, to input text and characters by depressing buttons (referred to as keys), similar to a typewriter. The most common English-language key layout is the QWERTY layout.
Pointing devices
Mouse - a pointing device that detects two dimensional motion relative to its supporting surface.
Trackball - a pointing device consisting of an exposed portruding ball housed in a socket that detects rotation about two axes.
Xbox 360 Controller - A controller used for Xbox 360, Which with the use of the application Switchblade(tm), can be used as an additional pointing device with the left or right thumbstick.
Gaming devices
Joystick - a general control device that consists of a handheld stick that pivots around one end, to detect angles in two or three dimensions.
Gamepad - a general game controller held in the hand that relies on the digits (especially thumbs) to provide input.
Game controller - a specific type of controller specialized for certain gaming purposes.
Image, Video input devices
Image scanner - a device that provides input by analyzing images, printed text, handwriting, or an object.
Webcam - a low resolution video camera used to provide visual input that can be easily transferred over the internet.
Audio input devices
Microphone - an acoustic sensor that provides input by converting sound into an electrical signals.

Output:

Image, Video output devices
Printer
Monitor
Audio output devices
[[Computer speakerSpeakers]
[[HeadphonesHeadset]

Binary Numeral System:

The binary numeral system, or base-2 number system, is a numeral system that represents numeric values using two symbols, usually 0 and 1. More specifically, the usual base-2 system is a positional notation with a radix of 2. Owing to its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by all modern computers.

History:

The ancient Indian writer Pingala developed advanced mathematical concepts for describing prosody, and in doing so presented the first known description of a binary numeral system, possibly as early as the 8th century BC. Others place him much later; R. Hall, Mathematics of Poetry, has "c. 200 BC". The numeration system was based on the Eye of Horus Old Kingdom numeration system.
A full set of 8 trigrams and 64 hexagrams, analogous to the 3-bit and 6-bit binary numerals, were known to the ancient Chinese in the classic text I Ching. Similar sets of binary combinations have also been used in traditional African divination systems such as Ifá as well as in medieval Western geomancy.
An arrangement of the hexagrams of the I Ching, ordered according to the values of the corresponding binary numbers (from 0 to 63), and a method for generating the same, was developed by the Chinese scholar and philosopher Shao Yong in the 11th century. However, there is no evidence that Shao understood binary computation; the ordering is also the lexicographical order on sextuples of elements chosen from a two-element set.
In 1605 Francis Bacon discussed a system by which letters of the alphabet could be reduced to sequences of binary digits, which could then be encoded as scarcely visible variations in the font in any random text. Importantly for the general theory of binary encoding, he added that this method could be used with any objects at all: "provided those objects be capable of a twofold difference only; as by Bells, by Trumpets, by Lights and Torches, by the report of Muskets, and any instruments of like nature". (See Bacon's cipher.)
The modern binary number system was fully documented by Gottfried Leibniz in the 17th century in his article Explication de l'Arithmétique Binaire. Leibniz's system used 0 and 1, like the modern binary numeral system.
In 1854, British mathematician George Boole published a landmark paper detailing an algebraic system of logic that would become known as Boolean algebra. His logical calculus was to become instrumental in the design of digital electronic circuitry.
In 1937, Claude Shannon produced his master's thesis at MIT that implemented Boolean algebra and binary arithmetic using electronic relays and switches for the first time in history. Entitled A Symbolic Analysis of Relay and Switching Circuits, Shannon's thesis essentially founded practical digital circuit design.
In November of 1937, George Stibitz, then working at Bell Labs, completed a relay-based computer he dubbed the "Model K" (for "Kitchen", where he had assembled it), which calculated using binary addition. Bell Labs thus authorized a full research program in late 1938 with Stibitz at the helm. Their Complex Number Computer, completed January 8, 1940, was able to calculate complex numbers. In a demonstration to the American Mathematical Society conference at Dartmouth College on September 11, 1940, Stibitz was able to send the Complex Number Calculator remote commands over telephone lines by a teletype. It was the first computing machine ever used remotely over a phone line. Some participants of the conference who witnessed the demonstration were John Von Neumann, John Mauchly, and Norbert Wiener, who wrote about it in his memoirs.